Creatine  Monohydrate – we need to supplement as we age

Categories:

Why this is important:

Creatine is used by the body to help produce energy for muscles, especially during high-intensity exercise. Creatine monohydrate is the most common form of creatine, a naturally occurring substance found in the body. It is also found in small amounts in red meat and seafood. Creatine has been shown to be effective in improving exercise performance and muscle mass in both young and old adults. As we age, we begin to produce less creatine, and supplementation is very important to help maintain muscle mass for healthy aging and anti-aging.


Simple Overview:

Here are some of the health benefits of creatine monohydrate:

Enhances:

  •   rehabilitation
  •   injury prevention
  •   cognitive function
  •   thermoregulation
  •   post-exercise recovery
  •   strength and/or muscle mass
  •   concussion and/or spinal cord neuroprotection

Improves:

  •    aging
  •    diabetes
  •    fibromyalgia
  •    osteoarthritis
  •    glycemic control
  •    adolescent depression
  •    brain and heart ischemia
  •    knee osteoarthritis and fibromyalgia

Reduces

  •     bone loss
  •     mental fatigue
  •     homocysteine levels
  •     fat accumulation in liver
  •    cholesterol and triglyceride levels
  •    tumor growth in some types of cancers

All these claims can be substantiated by science if you read the details of the following research paper put forth by the International Society of Sports Nutrition (ISSN) and the relevant references.


Dive a little deeper:

International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine
PMID: 28615996   2017  June 13     

My abstracts from the research paper:

Creatine is one of the most popular nutritional ergogenic aids for athletes. Studies have consistently shown that creatine supplementation increases intramuscular creatine concentrations which may help explain the observed improvements in high intensity exercise performance leading to greater training adaptations. In addition to athletic and exercise improvement, research has shown that creatine supplementation may enhance post-exercise recovery, injury prevention, thermoregulation, rehabilitation, and concussion and/or spinal cord neuroprotection. Additionally, a number of clinical applications of creatine supplementation have been studied involving neurodegenerative diseases (e.g., muscular dystrophy, Parkinson’s, Huntington’s disease), diabetes, osteoarthritis, fibromyalgia, aging, brain and heart ischemia, adolescent depression, and pregnancy. These studies provide a large body of evidence that creatine can not only improve exercise performance, but can play a role in preventing and/or reducing the severity of injury, enhancing rehabilitation from injuries, and helping athletes tolerate heavy training loads.

Additionally, researchers have identified a number of potentially beneficial clinical uses of creatine supplementation. These studies show that short and long-term supplementation (up to 30 g/day for 5 years) is safe and well-tolerated in healthy individuals and in a number of patient populations ranging from infants to the elderly. Moreover, significant health benefits may be provided by ensuring habitual low dietary creatine ingestion (e.g., 3 g/day) throughout the lifespan. The purpose of this review is to provide an update to the current literature regarding the role and safety of creatine supplementation in exercise, sport, and medicine and to update the position stand of International Society of Sports Nutrition (ISSN).

Regarding Aging:

A growing collection of evidence supports that creatine supplementation may improve health status as individuals age [41, 43,44,45, 195]. In this regard, creatine supplementation has been reported to help lower cholesterol and triglyceride levels [67, 196]; reduce fat accumulation in the liver [197]; reduce homocysteine levels [198]; serve as an antioxidant [199,200,201,202]; enhance glycemic control [132, 203,204,205]; slow tumor growth in some types of cancers [32, 198, 206, 207]; increase strength and/or muscle mass [37, 41, 44, 45, 82, 208,209,210,211,212]; minimize bone loss [211, 212]; improve functional capacity in patients with knee osteoarthritis [213] and fibromyalgia [214]; positively influence cognitive function [43, 83, 195]; and in some instances, serve as an anti-depressant [215,216,217].

For example:

  • Gualano and associates supplemented patients with type II diabetes with a placebo or creatine (5 g/day) for 12 weeks during training. Creatine supplementation significantly decreased HbA1c and glycemic response to standardized meal as well as increased GLUT-4 translocation. These findings suggest that creatine supplementation combined with an exercise program improves glycemic control and glucose disposal in type 2 diabetic patients.
  • Candow and others [211] reported that low-dose creatine (0.1 g/kg/day) combined with protein supplementation (0.3 g/kg/day) increased lean tissue mass and upper body strength while decreasing markers of muscle protein degradation and bone resorption in older men (59–77 years).
  • Similarly, Chilibeck et al. [212] reported that 12 months of creatine supplementation (0.1 g/kg/day) during resistance training increased strength and preserved femoral neck bone mineral density and increased femoral shaft subperiosteal width in postmenopausal women.
  • A recent meta-analysis [80] of 357 elderly individuals (64 years) participating in an average of 12.6 weeks of resistance training found that participants supplementing their diet with creatine experienced greater gains in muscle mass, strength, and functional capacity.
  • These findings were corroborated in a meta-analysis of 405 elderly participants (64 years) who experienced greater gains in muscle mass and upper body strength with creatine supplementation during resistance-training compared to training alone [37]. These findings suggest that creatine supplementation can help prevent sarcopenia and bone loss in older individuals.

Finally, a number of studies have shown that creatine supplementation can increase brain creatine content generally by 5 – 15% [218,219,220]. Moreover, creatine supplementation can reduce mental fatigue [221] and/or improve cognitive function [83, 222,223,224,225].

For example:

  • Watanabe et al. [221] reported that creatine supplementation (8 g/day for 5 days) reduced mental fatigue when subjects repeatedly performed a simple mathematical calculation as well as increased oxygen utilization in the brain.
  • Rae and colleagues [222] reported that creatine supplementation (5 g/day for 6 weeks) significantly improved working memory and intelligence tests requiring speed of processing.
  • McMorris and coworkers [224] found that creatine supplementation (20 g/day for 7 days) after sleep deprivation demonstrated significantly less decrement in performance in random movement generation, choice reaction time, balance and mood state suggesting that creatine improves cognitive function in response to sleep deprivation. This research group also examined the effects of creatine supplementation (20 g/day for 7 days) on cognitive function in elderly participants and found that creatine supplementation significantly improved performance on random number generation, forward spatial recall, and long-term memory tasks.
  • Ling and associates [225] reported that creatine supplementation (5 g/day for 15 days) improved cognition on some tasks. Since creatine uptake by the brain is slow and limited, current research is investigating whether dietary supplementation of creatine precursors like GAA may promote greater increases in brain creatine [226, 227]. One recent study suggested that GAA supplementation (3 g/day) increased brain creatine content to a greater degree than creatine monohydrate [227].
Position of the international society of sports nutrition (ISSN):

After reviewing the scientific and medical literature in this area, the International Society of Sports Nutrition concludes the following in terms of creatine supplementation as the official Position of the Society:

  • 1. Creatine monohydrate is the most effective ergogenic nutritional supplement currently available to athletes with the intent of increasing high-intensity exercise capacity and lean body mass during training.
  • 2. Creatine monohydrate supplementation is not only safe, but has been reported to have a number of therapeutic benefits in healthy and diseased populations ranging from infants to the elderly. There is no compelling scientific evidence that the short- or long-term use of creatine monohydrate (up to 30 g/day for 5 years) has any detrimental effects on otherwise healthy individuals or among clinical populations who may benefit from creatine supplementation.
  • 3. If proper precautions and supervision are provided, creatine monohydrate supplementation in children and adolescent athletes is acceptable and may provide a nutritional alternative with a favorable safety profile to potentially dangerous anabolic androgenic drugs. However, we recommend that creatine supplementation only be considered for use by younger athletes who: a.) are involved in serious/competitive supervised training; b.) are consuming a well-balanced and performance enhancing diet; c.) are knowledgeable about appropriate use of creatine; and d.) do not exceed recommended dosages.
  • 4. Label advisories on creatine products that caution against usage by those under 18 years old, while perhaps intended to insulate their manufacturers from legal liability, are likely unnecessary given the science supporting creatine’s safety, including in children and adolescents.
  • 5. At present, creatine monohydrate is the most extensively studied and clinically effective form of creatine for use in nutritional supplements in terms of muscle uptake and ability to increase high-intensity exercise capacity.
  • 6. The addition of carbohydrate or carbohydrate and protein to a creatine supplement appears to increase muscular uptake of creatine, although the effect on performance measures may not be greater than using creatine monohydrate alone.
  • 7. The quickest method of increasing muscle creatine stores may be to consume ~0.3 g/kg/day of creatine monohydrate for 5–7-days followed by 3–5 g/day thereafter to maintain elevated stores. Initially, ingesting smaller amounts of creatine monohydrate (e.g., 3–5 g/day) will increase muscle creatine stores over a 3–4 week period, however, the initial performance effects of this method of supplementation are less supported.
  • 8. Clinical populations have been supplemented with high levels of creatine monohydrate (0.3 – 0.8 g/kg/day equivalent to 21–56 g/day for a 70 kg individual) for years with no clinically significant or serious adverse events.
  • 9. Further research is warranted to examine the potential medical benefits of creatine monohydrate and precursors like guanidinoacetic acid on sport, health and medicine.
Conclusion

Creatine monohydrate remains one of the few nutritional supplements for which research has consistently shown has ergogenic benefits. Additionally, a number of potential health benefits have been reported from creatine supplementation. Comments and public policy related to creatine supplementation should be based on careful assessment of the scientific evidence from well-controlled clinical trials; not unsubstantiated anecdotal reports, misinformation published on the Internet, and/or poorly designed surveys that only perpetuate myths about creatine supplementation.

Given all the known benefits and favorable safety profile of creatine supplementation reported in the scientific and medical literature, it is the view of ISSN that government legislatures and sport organizations who restrict and/or discourage use of creatine may be placing athletes at greater risk—particularly in contact sports that have risk of head trauma and/or neurological injury thereby opening themselves up to legal liability. This includes children and adolescent athletes engaged in sport events that place them at risk for head and/or spinal cord injury.

“It is the view of the ISSN that sport organizations who restrict and/or discourage use of creatine may be placing athletes at greater risk”

International Society of Sports Nutrition


Share this: